Complete Reference for Odd Graceful Labeling of Cyclic Snakes

E. M. Badr

Department of scientific computing, Faculty of computers, Benha university, Benha, Egypt.

Abstract:

A graph is called odd graceful if it has an odd graceful labeling. The definition of odd graceful graphs was introduced by Gnanajothi [1]. Here we will define the graph (m, k) C_4 -snake and prove that the graphs kC_4 - snake is odd graceful, we prove the graph (2, k) C_4 -snake is odd graceful, we will introduce the odd graceful labeling of the graph (3, k) C_4 -snake, we will introduce the odd graceful labeling of the graph (m, k) C_4 -snake. We prove that the graphs kC_6 - snake is odd graceful, we prove the graph (2, k) C_6 -snake is odd graceful, we will introduce the odd graceful labeling of the graph (3, k) C_6 -snake, we will introduce the odd graceful labeling of the graph (m, k) C_6 -snake, we will prove that the graph (3, k) C_8 -snake, we will introduce the odd graceful labeling of the graph (3, k) C_8 -snake, we will introduce the odd graceful labeling of the graph (3, k) C_8 -snake, we will introduce the odd graceful labeling of the graph (m, k) C_8 -snake, and after that we will prove that the graph kC_{12} -snake is odd graceful.

Introduction:

A graph is called odd graceful if it has an odd graceful labeling. Gnanajothi [1] introduced the definition of odd graceful graphs. A graph G with q edges is said to be an odd graceful if there is an injection ϕ from the vertices of G "V(G)" to the set $\{0, 1, 2...2q - 1\}$ such that, when each edge $\{u, v\}$ is assigned the label $k = |\phi(u) - \phi(v)|, k \in \{1, 3, 5, ... 2q - 1\}$.

The graphs considered here will be finite, undirected and simple. We denote the vertex sets and the edges sets of a graph G by V(G) and E(G) respectively.

A cycle in a graph G is a closed walk of the form $w_1w_2w_3...w_k$ where $k \ge 3$, and if for some $i \ne j$ we have $w_i = w_j$ then $\{i, j\} = \{1, 2\}$. A kC_n -snake is a connected graph with k blocks; each of the blocks is isomorphic to the cycle C_n , such that the block-cut-vertex graph is a path. We also call a kC_n -snake as a cyclic snake. The graph kC_n -snake was introduced by Barrientos as generalization of the concept of triangular snake introduced by Rosa [2]. Rosa [2] The cycle C_n is graceful if and only if $n \equiv 0$ or 3 (mod 4), E. M. Badr, M. I. Moussa and K. Kathiresan [3] proved that The cycle C_n is odd graceful if n is even, $n \ge 4$. Now we define The graphs mC_4 as the family of graphs consisting of m copies of C_4 with two non adjacent vertices in common

Example 1

Figure 1: The graphs $2C_4 \& 3C_4$.

and The graphs (m, k) C_4 as the family of graphs kC_4 -snake where every block has m copies of C_4 with two non adjacent vertices in common. such that the number of blocks is denoted by k.

Example 2

Figure 2: The graphs $(2, 2) C_4 & (3,2) C_4$.

Main Results:

Theorem 1: The graph kC_4 -snake " (1, k) C_4 -snake" is odd graceful.

Proof

Let kC_4 -snake be a graph and has q edges. Let $u_1u_2u_3...u_{k+1}$, $w_1w_2w_3...w_k$ and $v_1v_2v_3...v_k$ are the vertices of kC_4 -snake, such that v_i & w_i are put between u_i and u_{i+1} , i = 1, 2, 3... k, the graph kC_4 -snake has number of edges "q" 4k, as shown in the next figure.

Figure 3: The graph kC_4 -snake

The number of edges" q''=4k

Define $\phi: V(G) \rightarrow \{0, 1, 2... 2q-1\}$ as following:

$$\phi(u_i) = 4i - 4$$
 , $i = 1, 2, 3 \dots k + 1$

 $\phi(w_i) = 2q - 4i + 3$, $i = 1, 2, 3 \dots k$

 $\phi(v_i) = 2q - 4i + 1$, $i = 1, 2, 3 \dots k$

From the definition of ϕ we find:

• $\forall v \in V(G) : V(G)$ is a set contains all the vertices of the graph $G = kC_4$ -snake

$$\exists \max_{v \in V(G)} \phi(v) = \max\{ \max_{1 \le i \le k+1} (4i-4), \max_{1 \le i \le k} (2q-4i+3), \max_{1 \le i \le k} (2q-4i+1) \}$$

$$= \max\{ \max\{0, 4, 8 \dots 4k\}, \max\{2q-1, 2q-5 \dots 2q-4k+3\}, \max\{2q-3, 2q-7 \dots 2q-4k+1\} \}$$

$$= 2q-1$$

Hence, we find that
$$\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$$

- It's obvious that $\forall u, v \in V(G) \exists \phi(u) \neq \phi(v) \in \{0, 1, 2 \dots 2q 1\}$
- ... The function ϕ is one-to-one mapping from the vertex set of G "V(G)" to the set $\{0,1,2...2q-1\}$
- Now, we want to show that the labels of the edges of G belong to the set $\{1, 3, 5 \dots$

$$2q$$
 - 1 } and that's as following:

The range of $|\phi(w_i) - \phi(u_i)| = \{2q - 8i + 7, i = 1, 2 ...k\}$

=
$$\{2q - 1, 2q - 9 \dots 2q - 8k + 7\}$$
 , $2q = 8k$

$$= \{2q - 1, 2q - 9 \dots 7\}$$

The range of
$$|\phi(w_i) - \phi(u_{i+1})| = \{2q - 8i + 3, i = 1, 2 ...k\}$$

$$= \{2q - 5, 2q - 13 \dots 2q - 8k + 3\}$$
 , $2q = 8k$

$$= \{2q - 5, 2q - 13 \dots 3\}$$

The range of
$$|\phi(v_i) - \phi(u_i)| = \{2q - 8i + 5, i = 1, 2 ...k\}$$

$$= \{2q - 3, 2q - 11 \dots 2q - 8k + 5\}$$
 , $2q = 8k$

$$= \{2q - 3, 2q - 11 \dots 5\}$$

The range of $|\phi(v_i) - \phi(u_{i+1})| = \{2q - 8i + 1, i = 1, 2 ...k\}$

$$= \{2q - 7, 2q - 15 \dots 2q - 8k + 1\}$$
 , $2q = 8k$

$$= \{2q - 7, 2q - 15 \dots 1\}$$

Hence,
$$\{ | \phi(u) - \phi(v) | : u \ v \in E(G) \} = \{ 1, 3, 5 \dots 2q - 1 \}.$$

So the graph kC_4 -snake is odd graceful.

Example 3

Figure 4: The odd graceful labeling of the graph $3C_4$ -snake

Theorem 2: The graph (2, k) C_4 -snake is odd graceful.

Proof

Let $u_1u_2u_3...u_{k+1}$, $w_1^1w_1^2w_2^1w_2^2...w_k^1w_k^2$ and $v_1^1v_1^2v_2^1v_2^2...v_k^1v_k^2$ are the vertices of (2, k) C_4 -snake, such that v_i^j & w_i^j are put between u_i and u_{i+1} , i = 1, 2, 3...k, $j = 1, 2.v_i^j$ is beneath v_i^{j+1} and w_i^j is beneath w_i^{j+1} where j = 1, 2, the graph (2, k) C_4 -snake has number of edges "q" 8k, as shown in the next figure.

Figure 5: The graph (2, k) C_4 -snake

The number of edges" q"= 8k

Define $\phi: V(G) \rightarrow \{0, 1, 2... 2q-1\}$ as following:

$$\phi(u_i) = 8i - 8$$
, $i = 1, 2, 3 \dots k + 1$

$$\phi(w_i^j) = 2q - 8i + 2j + 3$$
, $i = 1, 2, 3 \dots k$, $j = 1, 2$

$$\phi(v_i^j) = 2q - 8i + 2j - 1$$
, $i = 1, 2, 3 \dots k$, $j = 1, 2$

From the definition of ϕ we find:

• $\forall v \in V(G) : V(G)$ is a set contains all the vertices of the graph G = (2, k) C_4 -snake

$$\max_{v \in V(G)} \phi(v) =$$

$$\max\{\max_{1\leq i\leq k+1} (8i-8), \max_{\substack{1\leq i\leq k,\\j=1,2}} (2q-8i+2j+3),$$

$$\max_{\substack{1 \le i \le k, \\ j=1,2}} (2q - 8i + 2j - 1)$$

$$\max \{ \max\{0, 8, 16 \dots 8k\},$$

$$\max_{j=1,2} \{ 2q + 2j - 5, 2q + 2j - 13 \dots 2q + 2j - 8k + 3\},$$

$$\max\{2q + 2j - 9, 2q + 2j - 17 \dots 2q + 2j - 8k - 1\} \}$$

$$= 2q - 1$$

Hence, we find that :- $\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$

- It's obvious that $\forall u, v \in V(G) \exists \phi(u) \neq \phi(v) \in \{0, 1, 2 \dots 2q 1\}$
- ... The function ϕ is one-to-one mapping from the vertex set of G "V(G)" to the set $\{0,1,2...2q-1\}$
- Now, we want to show that the labels of the edges of G belong to the set $\{1, 3, 5 \dots$

$$2q$$
 - 1 } and that's as following:

The range of
$$|\phi(w_i^1) - \phi(u_i)| = \{2q - 16i + 13, i = 1, 2 ...k\}$$

=
$$\{2q - 3, 2q - 19 \dots 2q - 16k + 13\}$$
 , $2q = 16k$

$$= \{2q - 3, 2q - 19 \dots 13\}$$

The range of $|\phi(w_i^1) - \phi(u_{i+1})| = \{2q - 16i + 5, i = 1, 2 ...k\}$

=
$$\{2q - 11, 2q - 27 \dots 2q - 16k + 5\}$$
 , $2q = 16k$

$$= \{2q - 11, 2q - 27 \dots 5\}$$

The range of
$$|\phi(w_i^2) - \phi(u_i)| = \{2q - 16i + 15 , i = 1, 2 ...k \}$$

$$= \{2q - 1, 2q - 17 ... 2q - 16k + 15 \} , 2q = 16k$$

$$= \{2q - 1, 2q - 17 ... 15\}$$

The range of
$$|\phi(w_i^2) - \phi(u_{i+1})| = \{2q - 16i + 7, i = 1, 2 \dots k\}$$

$$= \{2q - 9, 2q - 25 \dots 2q - 16k + 7\} \qquad , 2q = 16k$$

$$= \{2q - 9, 2q - 25 \dots 7\}$$
The range of $|\phi(v_i^1) - \phi(u_i)| = \{2q - 16i + 9, i = 1, 2 \dots k\}$

$$= \{2q - 7, 2q - 23 \dots 2q - 16k + 9\} \qquad , 2q = 16k$$

$$= \{2q - 7, 2q - 23 \dots 9\}$$
The range of $|\phi(v_i^1) - \phi(u_{i+1})| = \{2q - 16i + 1, i = 1, 2 \dots k\}$

$$= \{2q - 15, 2q - 31 \dots 2q - 16k + 1\} \qquad , 2q = 16k$$

$$= \{2q - 15, 2q - 31 \dots 1\}$$
The range of $|\phi(v_i^2) - \phi(u_i)| = \{2q - 16i + 11, i = 1, 2 \dots k\}$

$$= \{2q - 5, 2q - 21 \dots 2q - 16k + 11\} \qquad , 2q = 16k$$

$$= \{2q - 5, 2q - 21 \dots 2q - 16k + 11\} \qquad , 2q = 16k$$

$$= \{2q - 5, 2q - 21 \dots 2q - 16k + 11\} \qquad , 2q = 16k$$

The range of
$$|\phi(v_i^2) - \phi(u_{i+1})| = \{2q - 16i + 3 , i = 1, 2 ...k \}$$

$$= \{2q - 13, 2q - 29 ... 2q - 16k + 3 \} , 2q = 16k$$

$$= \{2q - 13, 2q - 29 ... 3\}$$

Hence,
$$\{ | \phi(u) - \phi(v) | : u \ v \in E(G) \} = \{ 1, 3, 5 \dots 2q - 1 \}.$$

So the graph (2, k) C_4 -snake is odd graceful.

Example 4

Figure 6: The odd graceful labeling of the graph (2, 4) C₄-snake

Theorem 3: The graph (3, k) C_4 -snake is odd graceful.

Proof

Let $u_1u_2u_3...u_{k+1}$, $w_1^1w_1^2w_1^3w_2^1w_2^2w_2^3...w_k^1w_k^2w_k^3$ and $v_1^1v_1^2v_1^3v_2^1v_2^2v_2^3...v_k^1v_k^2v_k^3$ are the vertices of (3, k) C_4 -snake, such that v_i^j & w_i^j are put between u_i and u_{i+1} , i = 1, 2, 3... $k, j = 1, 2, 3..v_i^j$ is beneath v_i^{j+1} and w_i^j is beneath w_i^{j+1} where j = 1, 2, 3, the graph (3, k) C_4 -snake has number of edges "q" 12k, as shown in the next figure.

Figure 7: The graph (3, k) C_4 -snake

The number of edges" q''=12k

Define $\phi: V(G) \rightarrow \{0, 1, 2... 2q-1\}$ as following:

$$\phi(u_i) = 12i - 12$$
, $i = 1, 2, 3 \dots k + 1$
$$\phi(w_i^j) = 2q - 12i + 2j + 5$$
, $i = 1, 2, 3 \dots k$, $j = 1, 2, 3$

$$\phi(v_i^j) = 2q - 12i + 2j - 1$$
 , $i = 1, 2, 3 \dots k$, $j = 1, 2, 3$

From the definition of ϕ we find:

• $\forall v \in V(G) : V(G)$ is a set contains all the vertices of the graph G = (3, k) C_4 -snake

 $\max_{v \in V(G)} \phi(v)$ $= \max \{ \max_{1 \le i \le k+1} (12i - 12), \max_{1 \le i \le k, 1 \le j \le 3} (2q - 12i + 2j + 5), \max_{1 \le j \le 3} (2q - 12i + 2j - 1) \}$

$$\max_{\substack{1 \le i \le k, \\ 1 \le j \le 3}} (2q - 12i + 2j - 1)$$

$$= \max \{ \max\{0, 12, 24 \dots 12k\},$$

$$\max_{j=1,2,3} \{ 2q + 2j - 7, 2q + 2j - 19 \dots 2q + 2j - 12k + 5\},$$

$$\max_{j=1,2,3} \{ 2q + 2j - 13, 2q + 2j - 25 \dots 2q + 2j - 12k - 1\} \}$$

$$= \max_{j=1,2,3} \{ 2q + 2j - 13, 2q + 2j - 25 \dots 2q + 2j - 12k - 1\} \}$$

$$= 2q - 1$$

Hence, we find that :- $\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$

- It's obvious that $\forall u, v \in V(G) \exists \phi(u) \neq \phi(v) \in \{0, 1, 2 \dots 2q-1\}$
- ... The function ϕ is one-to-one mapping from the vertex set of G "V(G)" to the set $\{0,1,2...2q-1\}$
- Now, we want to show that the labels of the edges of G belong to the set $\{1, 3, 5 \dots 2q 1 \}$ and that's as following:

The range of $|\phi(w_i^1) - \phi(u_i)| = \{2q - 24i + 19 , i = 1, 2 ...k \}$

$$= \{2q - 5, 2q - 29 \dots 2q - 24k + 19 \} , 2q = 24k$$
$$= \{2q - 5, 2q - 29 \dots 19\}$$

The range of $|\phi(w_i^1) - \phi(u_{i+1})| = \{2q - 24i + 7, i = 1, 2 ...k\}$ = $\{2q - 17, 2q - 41 ... 2q - 24k + 7\}$, 2q = 24k

$$=\{2q-17,2q-41\dots 7\}$$
 The range of $|\phi(w_i^2)-\phi(u_i)|=\{2q-24i+21,\dots i=1,2\dots k\}$
$$=\{2q-3,2q-27\dots 2q-24k+21\}$$
 $,2q=24k$
$$=\{2q-3,2q-27\dots 21\}$$
 The range of $|\phi(w_i^2)-\phi(u_{i+1})|=\{2q-24i+9,\dots i=1,2\dots k\}$
$$=\{2q-15,2q-39\dots 2q-24k+9\}$$
 $,2q=24k$
$$=\{2q-15,2q-39\dots 2q-24k+23\}$$
 $,2q=24k$
$$=\{2q-1,2q-25\dots 2q-24k+23\}$$
 $,2q=24k$
$$=\{2q-1,2q-25\dots 2q-24k+23\}$$
 $,2q=24k$
$$=\{2q-1,2q-25\dots 2q-24k+23\}$$
 $,2q=24k$
$$=\{2q-1,2q-25\dots 2q-24k+23\}$$
 $,2q=24k$
$$=\{2q-13,2q-37\dots 2q-24k+11\}$$
 $,2q=24k$
$$=\{2q-13,2q-37\dots 11\}$$
 The range of $|\phi(v_i^3)-\phi(u_i)|=\{2q-24i+13, i=1,2\dots k\}$
$$=\{2q-11,2q-35\dots 2q-24k+13\}$$
 $,2q=24k$
$$=\{2q-11,2q-35\dots 13\}$$
 The range of $|\phi(v_i^1)-\phi(u_i)|=\{2q-24i+1, i=1,2\dots k\}$
$$=\{2q-11,2q-35\dots 2q-24k+1\}$$
 $,2q=24k$
$$=\{2q-23,2q-47\dots 2q-24k+1\}$$
 $,2q=24k$ The range of $|\phi(v_i^2)-\phi(u_i)|=\{2q-24i+1, i=1,2\dots k\}$
$$=\{2q-23,2q-47\dots 2q-24k+1\}$$
 $,2q=24k$ The range of $|\phi(v_i^2)-\phi(u_i)|=\{2q-24i+1, i=1,2\dots k\}$ $,2q=24k$ $,2q=24k+1$ $,2q=24k+1$

 $= \{2q - 9, 2q - 33 \dots 15\}$

The range of
$$|\phi(v_i^2) - \phi(u_{i+1})| = \{2q - 24i + 3, i = 1, 2 ...k\}$$

$$= \{2q - 21, 2q - 35 ... 2q - 24k + 3\}, 2q = 24k$$

$$= \{2q - 21, 2q - 35 ... 3\}$$

The range of
$$|\phi(v_i^3) - \phi(u_i)| = \{2q - 24i + 17 , i = 1, 2 ...k \}$$

$$= \{2q - 7, 2q - 31 ... 2q - 24k + 17 \} , 2q = 24k$$

$$= \{2q - 7, 2q - 31 ... 17\}$$

The range of
$$|\phi(v_i^3) - \phi(u_{i+1})| = \{2q - 24i + 5 , i = 1, 2 ...k \}$$

$$= \{2q - 19, 2q - 43 ... 2q - 24k + 5 \} , 2q = 24k$$

$$= \{2q - 9, 2q - 43 ... 5\}$$

Hence,
$$\{ | \phi(u) - \phi(v) | : u | v \in E(G) \} = \{ 1, 3, 5, ..., 2q - 1 \}.$$

So the graph (3, k) C_4 -snake is odd graceful.

Example 5

Figure 8: The odd graceful labeling of the graph (3, 3) C_4 -snake

Theorem 4: The graph (m, k) C_4 -snake is odd graceful.

Proof

Let $u_1u_2u_3...u_{k+1}$, w_i^j , where i = 1, 2, 3...k, j = 1, 2, 3,...m and v_i^j , where i = 1, 2, 3...k, j = 1, 2, 3...m are the vertices of (m, k) C_4 -snake, such that $v_i^j \& w_i^j$ are put between u_i and u_{i+1} , i = 1, 2, 3...k, j = 1, 2, 3...m. v_i^j is beneath v_i^{j+1} and w_i^j is beneath w_i^{j+1} where

j = 1, 2, 3...m, the graph (m, k) C_4 -snake has number of edges "q" 4m k, as shown in the next figure.

Figure 9: The graph (m, k) C_4 -snake

The number of edges" q'' = 4m k

Define $\phi: V(G) \rightarrow \{0, 1, 2... 2q-1\}$ as following:

$$\phi(u_i) = 4m (i - 1)$$
, $i = 1, 2, 3 \dots k + 1$

$$\phi(w_i^j) = 2q - 4mi + 2j + 2m - 1$$
, $i = 1, 2, 3 \dots k$, $j = 1, 2, 3 \dots m$

$$\phi(v_i^j) = 2q - 4mi + 2j - 1$$
, $i = 1, 2, 3 \dots k$, $j = 1, 2, 3 \dots m$

From the definition of ϕ we find:

• $\forall v \in V(G) : V(G)$ is a set contains all the vertices of the graph G = (m, k) C_4 -snake

$$= \max \{ \max\{0, 4m, 8m \dots 4mk\}, \\ \max_{1 \le j \le m} \{2q + 2j - 2m - 1, 2q + 2j - 6m - 1 \dots 2q + 2j - 4mk - 1\} \\ , \\ \max_{j=1,2,3} \{2q + 2j - 4m - 1, 2q + 2j - 8m - 1 \dots 2q + 2j - 4mk - 1\} \\ \}$$

$$= 2q - 1$$

Hence, we find that :- $\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$

- It's obvious that $\forall u, v \in V(G) \exists \phi(u) \neq \phi(v) \in \{0, 1, 2 \dots 2q 1\}$
- ... The function ϕ is one-to-one mapping from the vertex set of G "V(G)" to the set $\{0,1,2...2q-1\}$
- Now, we want to show that the labels of the edges of G belong to the set $\{1, 3, 5 \dots 2q 1 \}$ and that's as following: The range of $|\phi(w_i^j) \phi(u_i)| = \{2q 8mi + 2j + 6m 1 , i = 1, 2 \dots k, j = 1, 2 \dots m \}$

$$= \{2q + 2j - 2m - 1, 2q + 2j - 10m - 1 \dots 2q + 2j - 8mk + 6m - 1, j = 1, 2, 3 \dots m \}$$
, $2q = 8mk$

The range of $|\phi(w_i^j) - \phi(u_{i+1})| = \{2q - 8mi + 2j + 2m - 1, i = 1, 2 ...k, j = 1, 2 ...k\}$

$$= \{2q + 2j - 6m - 1, 2q + 2j - 14m - 1 \dots 2q + 2j - 8mk + 2m - 1, j = 1, 2, 3 \dots m \}, 2q = 8mk$$

The range of $|\phi(v_i^j) - \phi(u_i)| = \{2q - 8mi + 2j + 4m - 1, i = 1, 2 ...k, j = 1, 2 ...k\}$

$$= \{2q + 2j - 4m - 1, 2q + 2j - 12m - 1 \dots 2q + 2j - 8mk + 4m - 1, j = 1, 2, 3 \dots m \}$$

$$, 2q = 8mk$$

The range of $|\phi(v_i^j) - \phi(u_{i+1})| = \{2q - 8mi + 2j - 1, 2...k, j = 1, 2...k, j = 1, 2...m\}$

=
$$\{2q + 2j - 8m - 1, 2q + 2j - 16m - 1 \dots 2q + 2j - 8mk - 1, j = 1, 2, 3 \dots m \}$$
, $2q = 8mk$

Hence, $\{ | \phi(u) - \phi(v) | : u \ v \in E(G) \} = \{ 1, 3, 5 \dots 2q - 1 \}.$

So the graph (m, k) C_4 -snake is odd graceful.

Example 6

Figure 10: The odd graceful labeling of the graph (4,2) C_4 -snake

Theorem 1: The graph kC_6 " (1, k) C_6 " is odd graceful.

Proof

Let $u_1u_2u_3...u_{k+1}$, $w_1w_2w_3...w_k$, $v_1v_2v_3...v_k$ and $w_{11}w_{12}w_{21}$ $w_{22}w_{31}w_{32}$... $w_{k1}w_{k2}$ are the vertices of kC_6 , such that v_i & w_i are put between u_i and u_{i+1} , w_{il} is put between w_p and u_i such that i = 1, 2, 3...k, p = 1,2,3...k, l = 1, 2, the graph kC_6 has number of edges "q" 6k, as shown in the next figure.

Figure 3: The graph kC_6

The number of edges" q''=6k

Define $\phi: V(G) \rightarrow \{0, 1, 2... 2q-1\}$ as following:

$$\phi(u_i) = 4i - 4$$
, $i = 1, 2, 3 ... k + 1$

$$\phi(w_i) = 4i - 2$$
, $i = 1, 2, 3 ... k$

$$\phi(w_{il}) = 2q - 4i - 2l + 5$$
, $i = 1, 2, 3 ... k$, $l = 1, 2$

$$\phi(v_i) = 4k - 4i + 1$$
, $i = 1, 2, 3 ... k$

From the definition of ϕ we find:

• $\forall v \in V(G) : V(G)$ is a set contains all the vertices of the graph $G = kC_6$

$$\max_{v \in V(G)} \phi(v) =$$

$$\max_{1 \le i \le k+1} (4i-4), \max_{1 \le i \le k} (4i-2),$$

$$\max_{1 \le i \le k} (2q-4i-2l+5), \max_{1 \le i \le k} (4k-4i+1) \}$$

$$= \max\{\max\{0, 4, 8 ...4k\}, \max\{2, 6 ... 4k - 2\}, \max_{l=1,2} \{2q-2l+1, 2q-2l-3 ... 2q-2l-4k+5\},$$

$$\max\{4k-3, 4k-7 ... 1\} \}$$

$$= 2q-1$$

Hence, we find that :- $\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$

- It's obvious that $\forall u, v \in V(G) \exists \phi(u) \neq \phi(v) \in \{0, 1, 2 \dots 2q 1\}$
- ... The function ϕ is one-to-one mapping from the vertex set of G "V(G)" to the set $\{0,1,2...2q-1\}$
- Now, we want to show that the labels of the edges of G belong to the set $\{1, 3, 5 \dots$

2q - 1 } and that's as following:

The range of $|\phi(w_{i1}) - \phi(u_i)| = \{2q - 8i + 7, i = 1, 2 ...k\}$

=
$$\{2q - 1, 2q - 9 \dots 2q - 8k + 7\}$$
 , $2q = 12k$

The range of $|\phi(w_{i1}) - \phi(w_i)| = \{2q - 8i + 5, i = 1, 2 ...k\}$

$$= \{2q - 3, 2q - 11 \dots 2q - 8k + 5\}$$
 , $2q = 12k$

The range of $|\phi(w_{i2}) - \phi(w_i)| = \{2q - 8i + 3, i = 1, 2 ...k\}$

=
$$\{2q - 5, 2q - 13 \dots 2q - 8k + 3\}$$
 , $2q = 12k$

The range of $|\phi(w_{i2}) - \phi(u_{i+1})| = \{2q - 8i + 1, i = 1, 2 ...k\}$

$$= \{2q - 7, 2q - 9 \dots 2q - 8k + 1\}$$
 , $2q = 12k$

The range of $|\phi(v_i) - \phi(u_i)| = \{4k - 8i + 5, i = 1, 2 ...k\}$

$$= \{4k - 3, 4k - 11 \dots 5 - 4k\}$$
 , $2q = 12k$

The range of $|\phi(v_i) - \phi(u_{i+1})| = \{4k - 8i + 1, i = 1, 2 ...k\}$

$$= \{4k-7, 4k-15 \dots 1-4k\}$$
, $2q = 12k$

Hence, $\{ | \phi(u) - \phi(v) | : u | v \in E(G) \} = \{ 1, 3, 5, ..., 2q - 1 \}.$

So the graph kC_6 is odd graceful.

Example 3

Figure 4: The odd graceful labeling of the graph $4C_6$

Theorem 2: The graph (2, k) C_6 is odd graceful.

Proof

Let $u_1u_2u_3...u_{k+1}$, $w_1^1w_1^2w_2^1w_2^2...w_k^1w_k^2$, $v_1^1v_1^2v_2^1v_2^2...v_k^1v_k^2$ and w_{il}^j , where i = 1, 2, 3...k, l = 1, 2, j = 1, 2, are the vertices of (2, k) C_6 , such that $v_i^j \& w_i^j$ are put between u_i and u_{i+1}, w_{il}^j between u_i and w_p^j , such that i = 1, 2, 3...k+1, p = 1, 2, 3...k, $l = 1, 2, j = 1, 2, v_i^j$ is beneath v_i^{j+1} , w_i^j is beneath w_i^{j+1} and w_{il}^j is beneath w_{il}^{j+1} where j = 1, 2, the graph (2, k) C_6 has number of edges "q" 12k, as shown in the next figure.

Figure 5: The graph (2, k) C_6

The number of edges" q''=12k

Define $\phi: V(G) \rightarrow \{0, 1, 2... 2q-1\}$ as following:

$$\phi(u_i) = 8i - 8$$
, $i = 1, 2, 3 \dots k + 1$

$$\phi(w_i^j) = 8i + 4j - 10$$
, $i = 1, 2, 3 \dots k$, $j = 1, 2$

$$\phi(w_{il}^j) = 2q - 8i - 4l + 2j + 7$$
, $i = 1, 2, 3 \dots k$, $l = 1, 2, j = 1, 2$

$$\phi(v_i^j) = 8k - 8i + 2j - 1$$
 , $i = 1, 2, 3 \dots k, j = 1, 2$

From the definition of ϕ we find:

• $\forall v \in V(G) : V(G)$ is a set contains all the vertices of the graph $G = (2, k) C_6$

Hence, we find that :- $\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$

- It's obvious that $\forall u, v \in V(G) \exists \phi(u) \neq \phi(v) \in \{0, 1, 2 \dots 2q-1\}$
- ... The function ϕ is one-to-one mapping from the vertex set of G "V(G)" to the set $\{0,1,2...2q-1\}$
- Now, we want to show that the labels of the edges of G belong to the set $\{1, 3, 5 \dots 2q 1 \}$ and that's as following: The range of $|\phi(w_{i1}^1) \phi(u_i)| = \{2q 16i + 13, i = 1, 2 \dots k\}$

$$= \{2q - 3, 2q - 19 \dots 2q - 16k + 13\}$$
 , $2q = 24k$

The range of
$$|\phi(w_{i1}^1) - \phi(w_i^1)| = \{2q - 16i + 11, i = 1, 2 ...k\}$$

$$= \{2q - 5, 2q - 21, ..., 2q - 16k + 11\}, 2q = 24k$$

The range of
$$|\phi(w_{i1}^2) - \phi(u_i)| = \{2q - 16i + 15 , i = 1, 2 ...k \}$$

$$= \{2q - 1, 2q - 17 ... 2q - 16k + 15 \} , 2q = 24k$$
The range of $|\phi(w_{i1}^2) - \phi(w_i^2)| = \{2q - 16i + 9 , i = 1, 2 ...k \}$

$$= \{2q - 7, 2q - 23 ... 2q - 16k + 9 \} , 2q = 24k$$

The range of
$$|\phi(w_{i2}^1) - \phi(u_{i+1})| = \{2q - 16i + 1, i = 1, 2 ...k\}$$

$$= \{2q - 15, 2q - 31 ... 2q - 16k + 1\} , 2q = 24k$$

The range of
$$|\phi(w_{i2}^1) - \phi(w_i^1)| = \{2q - 16i + 7, i = 1, 2 ...k\}$$

= $\{2q - 9, 2q - 25 ... 2q - 16k + 7\}$, $2q = 24k$

The range of
$$|\phi(w_{i2}^2) - \phi(u_{i+1})| = \{2q - 16i + 3, i = 1, 2 ...k\}$$

$$= \{2q - 13, 2q - 29 ... 2q - 16k + 3\}, 2q = 24k$$

The range of
$$|\phi(w_{i2}^2) - \phi(w_i^2)| = \{2q - 16i + 5, i = 1, 2 ...k\}$$

$$= \{2q - 11, 2q - 27 ... 2q - 16k + 5\} , 2q = 24k$$

The range of
$$|\phi(v_i^1) - \phi(u_i)| = \{8k - 16i + 9 , i = 1, 2 ...k \}$$

= $\{8k - 7, 8k - 23 ... 9 - 8k\}$, $2q = 24k$

The range of
$$|\phi(v_i^2) - \phi(u_i)| = \{8k - 16i + 11 , i = 1, 2 ...k \}$$

= $\{8k - 5, 8k - 21 ... 11 - 8k\}$, $2q = 24k$

The range of
$$|\phi(v_i^1) - \phi(u_{i+1})| = \{8k - 16i + 1 , i = 1, 2 ...k\}$$
$$= \{8k - 15, 8k - 31 ... 1 - 8k\} , 2q = 24k$$

The range of
$$|\phi(v_i^2) - \phi(u_{i+1})| = \{8k - 16i + 3, i = 1, 2 ...k\}$$

= $\{8k - 13, 8k - 29 ... 3 - 8k\}$, $2q = 24k$

Hence, $\{ | \phi(u) - \phi(v) | : u | v \in E(G) \} = \{ 1, 3, 5, ..., 2q - 1 \}.$

So the graph(2, k) C_6 is odd graceful.

Example 4

Figure 6: The odd graceful labeling of the graph (2,3) C_6

Theorem 3: The graph (3, k) C_6 is odd graceful.

Proof

Let $u_1u_2u_3...u_{k+1}$, w_i^j , where i = 1, 2, 3...k, $j = 1, 2, 3, v_i^j$, where i = 1, 2, 3...k, j = 1, 2, 3 and w_{ij}^j , where i = 1, 2, 3...k, l = 1, 2, j = 1, 2, 3, are the vertices of (3, k) C_6 , such that v_i^j & w_i^j are put between u_i and u_{i+1} , w_{ij}^j between u_i and w_p^j , such that i = 1, 2, 3...k+1, p = 1,2,3...k, $l = 1, 2, j = 1, 2, 3, v_i^j$ is beneath v_i^{j+1} , w_i^j is beneath w_i^{j+1} and w_{ij}^{j+1} is beneath w_{ij}^{j+1} where j = 1, 2, 3, the graph (3, k) C_6 has number of edges "q" 18k, as shown in the next figure.

Figure 7: The graph (3, k) C_6

The number of edges" q"= 18k

Define $\phi: V(G) \rightarrow \{0, 1, 2... 2q-1\}$ as following:

$$\phi(u_i) = 12i - 12$$

$$\phi(w_i^j) = 12i + 4j - 14$$

$$\phi(w_i^j) = 2q - 12i - 6l + 2j + 11$$

$$\phi(v_i^j) = 12k - 12i + 2j - 1$$

$$i = 1, 2, 3 \dots k, j = 1, 2, 3$$

$$i = 1, 2, 3 \dots k, l = 1, 2, j = 1, 2, 3$$

$$i = 1, 2, 3 \dots k, l = 1, 2, 3 \dots k, l = 1, 2, 3$$

From the definition of ϕ we find:

Hence,

• $\forall v \in V(G) : V(G)$ is a set contains all the vertices of the graph $G = (3, k) C_6$

$$\max_{v \in V(G)} \phi(v) = \max_{1 \le i \le k+1} (12i-12), \max_{1 \le i \le k, j=1,2,3} (12i+4j-14), \max_{1 \le i \le k, j=1,2,3} (2q-12i-6l+2j+11), \max_{1 \le i \le k, j=1,2,3} (12k-12i+2j-1)$$

$$= \max_{1 \le i \le k, j=1,2,3} (12k-12i+2j-1)$$

$$= \max\{\max\{0, 12, 24, \dots, 12k\}, \max_{j=1,2,3} \{4j-2, 4j+10 \dots 4j+12k-14\}$$

$$\max_{l=1,2, j=1,2,3} \{2q-6l+2j-1, 2q-6l+2j-13 \dots 2q-6l+2j-12k+11\}, \max_{j=1,2,3} \{12k+2j-13, 12k+2j-25 \dots 2j-1\} \}$$

$$= 2q-1$$

find

we

 $\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$

that

:-

- It's obvious that $\forall u, v \in V(G) \exists \phi(u) \neq \phi(v) \in \{0, 1, 2 \dots 2q 1\}$
- ... The function ϕ is one-to-one mapping from the vertex set of G "V(G)" to the set $\{0,1,2...2q-1\}$
- Now, we want to show that the labels of the edges of G belong to the set $\{1, 3, 5 \dots$

$$2q$$
 - 1 } and that's as following:

The range of $|\phi(w_{i1}) - \phi(u_i)| = \{2q - 24i + 19, i = 1, 2 ...k\}$

$$= \{2q - 5, 2q - 29 \dots 2q - 24k + 19\}$$
 , $2q = 36k$

The range of $|\phi(w_{i1}^1) - \phi(w_i^1)| = \{2q - 24i + 17, i = 1, 2 ...k\}$

$$= \{2q - 7, 2q - 31 \dots 2q - 24k + 17\}$$
 , $2q = 36k$

The range of $|\phi(w_{i1}^2) - \phi(u_i)| = \{2q - 24i + 21, i = 1, 2 ...k\}$

$$= \{2q - 3, 2q - 27 \dots 2q - 24k + 21\}$$
 , $2q = 36k$

The range of $|\phi(w_{i1}^2) - \phi(w_i^2)| = \{2q - 24i + 15, i = 1, 2 ...k\}$

$$= \{2q - 9, 2q - 33 \dots 2q - 24k + 15\}$$
 , $2q = 36k$

The range of $|\phi(w_{i1}^3) - \phi(u_i)| = \{2q - 24i + 23, i = 1, 2 ...k\}$

=
$$\{2q - 1, 2q - 25 \dots 2q - 24k + 23\}$$
 , $2q = 36k$

The range of $|\phi(w_{i1}^3) - \phi(w_i^3)| = \{2q - 24i + 13, i = 1, 2 ...k\}$

$$= \{2q - 11, 2q - 35 \dots 2q - 24k + 13\}$$
 , $2q = 36k$

The range of $|\phi(w_{i2}^1) - \phi(u_{i+1})| = \{2q - 24i + 1, i = 1, 2 ...k\}$

=
$$\{2q - 23, 2q - 47 \dots 2q - 24k + 1\}$$
 , $2q = 36k$

The range of $|\phi(w_{i2}^1) - \phi(w_i^1)| = \{2q - 24i + 11, i = 1, 2 ...k\}$

=
$$\{2q - 13, 2q - 37 \dots 2q - 24k + 11\}$$
 , $2q = 36k$

The range of $|\phi(w_{i2}^2) - \phi(u_{i+1})| = \{2q - 24i + 3, i = 1, 2 ...k\}$

=
$$\{2q - 21, 2q - 45 \dots 2q - 24k + 3\}$$
 , $2q = 36k$

The range of
$$|\phi(w_{i2}^2) - \phi(w_i^2)| = \{2q - 24i + 9 , i = 1, 2 ...k \}$$

$$= \{2q - 15, 2q - 39 ... 2q - 24k + 9 \} , 2q = 36k$$
The range of $|\phi(v_i^1) - \phi(u_i)| = \{12k - 24i + 13 , i = 1, 2 ...k \}$

$$= \{12k - 11, 12k - 35 ... 13 - 12k\} , 2q = 36k$$

The range of
$$|\phi(v_i^2) - \phi(u_i)| = \{12k - 24i + 15 , i = 1, 2 ...k \}$$

= $\{12k - 9, 12k - 33 ... 15 - 12k\}$, $2q = 36k$

The range of
$$|\phi(v_i^3) - \phi(u_i)| = \{12k - 24i + 17 , i = 1, 2 ...k \}$$

= $\{12k - 7, 12k - 31 ... 17 - 12k\}$, $2q = 36k$

The range of
$$|\phi(v_i^1) - \phi(u_{i+1})| = \{12k - 24i + 1, i = 1, 2 ...k\}$$

= $\{12k - 23, 12k - 47 ... 1 - 12k\}$, $2q = 36k$

The range of
$$|\phi(v_i^2) - \phi(u_{i+1})| = \{12k - 24i + 3, i = 1, 2 ...k\}$$

= $\{12k - 21, 12k - 45 ... 3 - 12k\}$, $2q = 36k$

The range of
$$|\phi(v_i^3) - \phi(u_{i+1})| = \{12k - 24i + 5, i = 1, 2 ...k\}$$

= $\{12k - 19, 12k - 43 ... 5 - 12k\}$, $2q = 36k$

Hence,
$$\{ | \phi(u) - \phi(v) | : u \ v \in E(G) \} = \{ 1, 3, 5 \dots 2q - 1 \}.$$

So the graph (3, k) C_6 is odd graceful.

Example 5

Figure 8: The odd graceful labeling of the graph (3, 2) C_6

Theorem 4: The graph (m, k) C_6 is odd graceful.

Proof

Let $u_1u_2u_3...u_{k+1}$, w_i^j , where i = 1, 2, 3...k, j = 1, 2, 3...m, v_i^j , where i = 1, 2, 3...k, j = 1, 2, 3...m and w_{ii}^j , where i = 1, 2, 3...k, l = 1, 2, j = 1, 2, 3...m are the vertices of (m, k) C_6 , such that $v_i^j \& w_i^j$ are put between u_i and u_{i+1}, w_{ii}^j between u_i and w_p^j , such that i = 1, 2, 3...k+1, p = 1,2,3...k, l = 1, 2, j = 1, 2, 3...m, v_i^j is beneath v_i^{j+1} , w_i^j is beneath w_{ii}^{j+1} and w_{ii}^j is beneath w_{ii}^{j+1} where j = 1, 2, 3...m, the graph (m, k) C_6 has number of edges "q" 6m k, as shown in the next figure.

Figure 9: The graph (m, k) C_6

The number of edges "q"= 6m k

Define $\phi: V(G) \rightarrow \{0, 1, 2... 2q-1\}$ as following:

$$\phi(u_i) = 4m (i - 1)$$

$$\phi(w_i^j) = 4mi + 4j - 4m - 2$$

$$\phi(w_i^j) = 2q - 4mi - 2ml + 2j + 4m - 1$$

$$i = 1, 2, 3 \dots k, j = 1, 2 \dots m$$

$$i = 1, 2, 3 \dots k, j = 1, 2 \dots m$$

 $, i = 1, 2, 3 \dots k, j = 1, 2 \dots m$

From the definition of ϕ we find:

 $\phi(v_i^j) = 4mk - 4mi + 2j - 1$

• $\forall v \in V(G)$: V(G) is a set contains all the vertices of the graph $G = (m, k) C_6$

$$\max_{v \in V(G)} \phi(v) =$$

$$\max_{1 \le i \le k+1} (4mi - 4m), \max_{\substack{1 \le i \le k, \\ 1 \le j \le m}} (4mi + 4j - 4m - 2),$$

$$\max_{\substack{1 \le i \le k, \\ l = 1, 2, \\ 1 \le j \le m}} (2q - 4mi - 2ml + 2j + 4m - 1),$$

$$\max_{\substack{1 \le i \le k, \\ l = 1, 2, \\ 1 \le j \le m}} (4mk - 4mi + 2j - 1) \}$$

$$1 \le j \le m$$

$$= 2q - 1$$

Hence, we find that :- $\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$

- It's obvious that $\forall u, v \in V(G) \exists \phi(u) \neq \phi(v) \in \{0, 1, 2 \dots 2q 1\}$
- ... The function ϕ is one-to-one mapping from the vertex set of G "V(G)" to the set $\{0,1,2...2q-1\}$
- Now, we want to show that the labels of the edges of G belong to the set $\{1, 3, 5 \dots 2q 1 \}$ and that's as following: The range of $|\phi(w_{i1}^{j}) - \phi(u_{i})| = \{2q - 8mi + 2j + 6m - 1 , i = 1, 2 \dots k, j = 1, 2 \dots m\}$

The range of
$$|\phi(w_{i1}^{j}) - \phi(w_{i}^{j})| = \{2q - 8mi - 2j + 6m + 1 , i = 1, 2 ...k, j = 1, 2 ...k, j = 1, 2 ...k \}$$

The range of
$$|\phi(w_{i2}^{j}) - \phi(w_{i}^{j})| = \{2q - 8mi - 2j + 1 , i = 1, 2 ...k, j = 1, 2 ...m \}$$

The range of $|\phi(w_{i2}^{j}) - \phi(u_{i+1})| = \{2q - 8mi + 2j - 1 , i = 1, 2 ...k, j = 1, 2 ...m \}$
The range of $|\phi(v_{i2}^{j}) - \phi(u_{i})| = \{4mk - 8mi + 2j + 4m - 1 , i = 1, 2 ...k, j = 1$

The range of
$$|\phi(v_i^j) - \phi(u_{i+1})| = \{4mk - 8mi + 2j - 1, i = 1, 2 ...k, j = 1, 2 ...m\}$$

Hence, $\{|\phi(u) - \phi(v)| : u \ v \in E(G)\} = \{1, 3, 5 ... 2q - 1\}.$

So the graph (m, k) C_6 is odd graceful.

Example 6

Figure 10: The odd graceful of the graph (4, 2) C_6

Theorem 1: The graph kC_8 -snake " (1, k) C_8 -snake" is odd graceful.

Proof

Let $u_1u_2u_3...u_{k+1}$, $w_1w_2w_3...w_k$, $v_1v_2v_3...v_k$, $w_{11}w_{12}w_{21}$ $w_{22}w_{31}w_{32}$... $w_{k1}w_{k2}$ and $v_{11}v_{12}v_{21}$ $v_{22}v_{31}v_{32}$... $v_{k1}v_{k2}$ are the vertices of kC_8 -snake, such that v_i & w_i are put between u_i and u_{i+1},w_{il} is put between w_p and u_i such that i=1,2,3...k+1, p=1,2,3...k, $l=1,2,v_{il}$ is put between v_p and u_i , where i=1,2,3...k+1, p=1,2,3...k, l=1,2, the graph kC_8 -snake has number of edges "q" 8k, as shown in the next figure.

Figure 3: The graph kC_8 -snake

The number of edges" q"= 8k

Define $\phi: V(G) \rightarrow \{0, 1, 2... 2q-1\}$ as following:

$$\phi(u_i) = 8(i-1)$$
, $i = 1, 2, 3 \dots k+1$

$$\phi(w_i) = 8i - 2$$
, $i = 1, 2, 3 \dots k$

$$\phi(v_i) = 8i - 6$$
, $i = 1, 2, 3 \dots k$

$$\phi(w_{il}) = 2q - 8i - 4l + 11$$
, $i = 1, 2, 3 \dots k$, $l = 1, 2$

$$\phi(v_{il}) = 2q - 8i - 4l + 9$$
, $i = 1, 2, 3 \dots k$, $l = 1, 2$

From the definition of ϕ we find:

• $\forall v \in V(G) : V(G)$ is a set contains all the vertices of the graph $G = kC_8$ -snake

$$\max_{v \in V(G)} \phi(v) =$$

$$\max_{1 \le i \le k+1} (8i-8), \max_{1 \le i \le k} (8i-2),$$

$$\max_{1 \le i \le k} (2q-8i-4l+11), \max_{1 \le i \le k} (8i-6),$$

$$\max_{1 \le i \le k} (2q-8i-4l+9) \}$$

$$= \max\{ \max\{0, 8, 16 ...8k\}, \max\{6, 14 ... 8k - 2\}, \max_{l=1,2} \{2q-4l+3, 2q-4l-5 ... 2q-4l-8k+11\} ,$$

$$\max \{2, \qquad 10 \qquad \dots \qquad 8k$$
6},
$$\max_{l=1,2} \{2q-4l+1, 2q-4l-7 \dots 2q-4l-8k+9\} \}$$

$$= 2q - 1$$

Hence, we find that :- $\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$

- It's obvious that $\forall u, v \in V(G) \exists \phi(u) \neq \phi(v) \in \{0, 1, 2 \dots 2q-1\}$
- ... The function ϕ is one-to-one mapping from the vertex set of G "V(G)" to the set $\{0,1,2...2q-1\}$
- Now, we want to show that the labels of the edges of G belong to the set $\{1, 3, 5 \dots 2q 1 \}$ and that's as following:

The range of $|\phi(w_{i1}) - \phi(u_i)| = \{2q - 16i + 15, i = 1, 2 ...k\}$

=
$$\{2q - 1, 2q - 17 \dots 2q - 16k + 15\}$$
 , $2q = 16k$

$$={2q-1, 2q-17 \dots 15}$$

The range of
$$|\phi(w_{i1}) - \phi(w_i)| = \{2q - 16i + 9 , i = 1, 2 ...k \}$$

$$= \{2q - 7, 2q - 23 ... 2q - 16k + 9 \} , 2q = 16k$$

$$= \{2q - 7, 2q - 23 ... 9 \}$$

The range of
$$|\phi(w_{i2}) - \phi(w_i)| = \{2q - 16i + 5 , i = 1, 2 ...k \}$$

$$= \{2q - 11, 2q - 27 ... 2q - 16k + 5 \} , 2q = 16k$$

$$= \{2q - 11, 2q - 27 ... 5 \}$$

The range of
$$|\phi(w_{i2}) - \phi(u_{i+1})| = \{2q - 16i + 3, i = 1, 2 ...k\}$$

$$= \{2q - 13, 2q - 29 ... 2q - 16k + 3\} , 2q = 16k$$

$$= \{2q - 13, 2q - 29 ... 3\}$$

The range of
$$|\phi(v_{i1}) - \phi(u_i)| = \{2q - 16i + 13, i = 1, 2 ...k\}$$

= $\{2q - 3, 2q - 19 ... 2q - 16k + 13\}$, $2q = 16k$

$$=$$
{2 q - 3, 2 q - 19 ... 13}

The range of
$$|\phi(v_{i1}) - \phi(v_i)| = \{2q - 16i + 11 , i = 1, 2 ...k \}$$

$$= \{2q - 5, 2q - 21 ... 2q - 16k + 11 \} , 2q = 16k$$

$$= \{2q - 5, 2q - 21 ... 11 \}$$

The range of
$$|\phi(v_{i2}) - \phi(v_i)| = \{2q - 16i + 7 , i = 1, 2 ...k \}$$

$$= \{2q - 9, 2q - 25 ... 2q - 16k + 7 \} , 2q = 16k$$

$$= \{2q - 9, 2q - 25 ... 7 \}$$

The range of
$$|\phi(v_{i2}) - \phi(u_{i+1})| = \{2q - 16i + 1 , i = 1, 2 ...k \}$$

$$= \{2q - 15, 2q - 31 ... 2q - 16k + 1 \} , 2q = 16k$$

$$= \{2q - 15, 2q - 31 ... 1 \}$$

Hence,
$$\{ | \phi(u) - \phi(v) | : u | v \in E(G) \} = \{ 1, 3, 5, ..., 2q - 1 \}.$$

So the graph kC_8 -snake is odd graceful.

Example 3

Figure 4: The odd graceful labeling of the graph $3C_8$ -snake

Theorem 2: The graph (2, k) C_8 -snake is odd graceful.

Proof

Let $u_1u_2u_3...u_{k+1}$, w_i^j , where i = 1, 2, 3...k, $j = 1, 2, v_i^j$, where i = 1, 2, 3...k, $j = 1, 2, w_i^j$, where i = 1, 2, 3...k, l = 1, 2, j = 1, 2 and v_i^j , where i = 1, 2, 3...k, l = 1, 2, j = 1, 2 are the vertices of (2, k) C_8 -snake, such that v_i^j & w_i^j are put between u_i and u_{i+1}, w_{i}^j is put between w_p^j and u_i such that i = 1, 2, 3...k+1, p = 1,2,3...k, $l = 1, 2, j = 1, 2, v_{i}^j$ is put between v_p^j and u_i such that i = 1, 2, 3...k+1, p = 1,2,3...k, $l = 1, 2, j = 1, 2, v_i^j$ is beneath v_i^{j+1} , w_i^j is beneath w_i^{j+1} , the graph (2, k) C_8 -snake has number of edges "q" 16k, as shown in the next figure.

Figure 5: The graph (2, k) C_8 -snake

The number of edges" q"= 16k

Define $\phi: V(G) \rightarrow \{0, 1, 2... 2q-1\}$ as following:

$$\phi(u_i) = 16(i-1)$$
, $i = 1, 2, 3 ... k+1$

$$\phi(w_i^j) = 16i + 4j - 10$$
, $i = 1, 2, 3 ... k$, $j = 1, 2$

$$\phi(v_i^j) = 16i + 4j - 18$$
, $i = 1, 2, 3 ... k$, $j = 1, 2$

$$\phi(w_{ii}^j) = 2q - 16i - 8l + 2j + 19$$
, $i = 1, 2, 3 ... k$, $l = 1, 2, j = 1, 2$

$$\phi(v_{ii}^j) = 2q - 16i - 8l + 2j + 15$$
, $i = 1, 2, 3 ... k$, $l = 1, 2, j = 1, 2$

From the definition of ϕ we find:

• $\forall v \in V(G) : V(G)$ is a set contains all the vertices of the graph $G = (2, k) C_8$ -snake

 \exists

$$\max_{v \in V(G)} \phi(v) =$$

$$\max\{\max_{1\leq i\leq k+1} (16i-16), \max_{\substack{1\leq i\leq k,\\j=1,2}} (16i+4j-10),$$

$$\max_{\substack{1 \le i \le k \\ l=1,2 \\ i=1,2}} (2q - 16i - 8l + 2j + 19), \max_{\substack{1 \le i \le k, \\ j=1,2 \\ i=1,2}} (16i + 4j - 18),$$

$$\max_{\substack{1 \le i \le k \\ l=1,2,\\ j=1,2}} (2q - 16i - 8l + 2j + 15)$$

$$= \max\{\max\{0, 16, 32, \dots 16k\}, \max_{j=1,2}\{4j+6,4j+22\dots 4j+16k-10\},$$

,
$$\max_{j=1,2} \{4j-2,4j+14\dots 4j+16k-18\}$$
,
$$\max_{\substack{l=1,2,\\j=1,2}} \{2q-8l+2j-1,2q-8l+2j-17\dots 2q-8l+2j-16k+15\}$$

$$= 2q - 1$$

Hence, we find that :-

$$\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$$

- It's obvious that $\forall u, v \in V(G) \exists \phi(u) \neq \phi(v) \in \{0, 1, 2 \dots 2q-1\}$
- ... The function ϕ is one-to-one mapping from the vertex set of G "V(G)" to the set $\{0,1,2...2q-1\}$
- Now, we want to show that the labels of the edges of G belong to the set $\{1, 3, 5 \dots$

2q - 1 } and that's as following:

The range of $|\phi(w_{i1}^1) - \phi(u_i)| = \{2q - 32i + 29 , i = 1, 2 ...k\}$

$$= \{2q - 3, 2q - 35... 2q - 32k + 29\}$$
 , $2q = 32k$

$$={2q-3, 2q-35 \dots 29}$$

The range of
$$|\phi(w_n^{-1}) - \phi(w_i^{-1})| = \{2q - 32i + 19 , i = 1, 2 ...k \}$$

$$= \{2q - 13, 2q - 45 ... 2q - 32k + 19 \} , 2q = 32k$$

$$= \{2q - 13, 2q - 45 ... 19 \}$$
The range of $|\phi(w_n^{-1}) - \phi(w_i^{-1})| = \{2q - 32i + 11 , i = 1, 2 ...k \}$

$$= \{2q - 21, 2q - 53 ... 2q - 32k + 11 \} , 2q = 32k$$

$$= \{2q - 21, 2q - 53 ... 11 \}$$
The range of $|\phi(w_n^{-1}) - \phi(u_{i+1})| = \{2q - 32i + 5 , i = 1, 2 ...k \}$

$$= \{2q - 27, 2q - 59 ... 2q - 32k + 5 \} , 2q = 32k$$

$$= \{2q - 27, 2q - 59 ... 5 \}$$
The range of $|\phi(w_n^{-2}) - \phi(u_i)| = \{2q - 32i + 31 , i = 1, 2 ...k \}$

$$= \{2q - 1, 2q - 33 ... 2q - 32k + 31 \} , 2q = 32k$$

$$= \{2q - 1, 2q - 33 ... 31 \}$$
The range of $|\phi(w_n^{-2}) - \phi(w_i^{-2})| = \{2q - 32i + 17 , i = 1, 2 ...k \}$

$$= \{2q - 15, 2q - 47 ... 2q - 32k + 17 \} , 2q = 32k$$

$$= \{2q - 15, 2q - 47 ... 17 \}$$
The range of $|\phi(w_n^{-2}) - \phi(w_i^{-2})| = \{2q - 32i + 9 , i = 1, 2 ...k \}$

$$= \{2q - 23, 2q - 55 ... 2q - 32k + 9 \} , 2q = 32k$$

The range of $|\phi(w_{i2}^2) - \phi(u_{i+1})| = \{2q - 32i + 7, i = 1, 2 ...k\}$

 $= \{2q - 23, 2q - 55 \dots 9\}$

$$= \{2q - 25, 2q - 57 \dots 2q - 32k + 7 \}$$
, $2q = 32k$
$$= \{2q - 25, 2q - 57 \dots 7 \}$$

The range of
$$|\phi(v_{i1}^{-1}) - \phi(u_i)| = \{2q - 32i + 25, i = 1, 2 ...k \}$$

$$= \{2q - 7, 2q - 39... 2q - 32k + 25 \}, 2q = 32k$$

$$= \{2q - 7, 2q - 39... 25\}$$

The range of
$$|\phi(v_{i1}^1) - \phi(v_i^1)| = \{2q - 32i + 23, i = 1, 2 ...k\}$$

$$= \{2q - 9, 2q - 41 ... 2q - 32k + 23\}, 2q = 32k$$

$$= \{2q - 9, 2q - 41 ... 23\}$$

The range of
$$|\phi(v_{i2}^{-1}) - \phi(v_i^{-1})| = \{2q - 32i + 15 , i = 1, 2 ... k\}$$

$$= \{2q - 17, 2q - 49 ... 2q - 32k + 15\} , 2q = 32k$$

$$= \{2q - 17, 2q - 49 \dots 15\}$$

The range of
$$|\phi(v_{i2}^{-1}) - \phi(u_{i+1})| = \{2q - 32i + 1, i = 1, 2 ...k\}$$

$$= \{2q - 31, 2q - 63 ... 2q - 32k + 1\} , 2q = 32k$$

$$= \{2q - 31, 2q - 63 ... 1\}$$

The range of
$$|\phi(v_{i1}^2) - \phi(u_i)| = \{2q - 32i + 27 , i = 1, 2 ...k \}$$

$$= \{2q - 5, 2q - 37 ... 2q - 32k + 27 \} , 2q = 32k$$

$$= \{2q - 5, 2q - 37 ... 27\}$$

The range of
$$|\phi(v_{i1}^2) - \phi(v_i^2)| = \{2q - 32i + 21 , i = 1, 2 ...k \}$$

$$= \{2q - 11, 2q - 43 ... 2q - 32k + 21 \} , 2q = 32k$$

$$= \{2q - 11, 2q - 43 ... 21 \}$$

The range of
$$|\phi(v_{i2}^2) - \phi(v_i^2)| = \{2q - 32i + 13 , i = 1, 2 ...k \}$$

$$= \{2q - 19, 2q - 51 ... 2q - 32k + 13 \} , 2q = 32k$$

$$= \{2q - 19, 2q - 51 ... 13 \}$$

The range of
$$|\phi(v_{i2}^2) - \phi(u_{i+1})| = \{2q - 32i + 3, i = 1, 2 ... k\}$$

$$= \{2q - 29, 2q - 61 ... 2q - 32k + 3\} , 2q = 32k$$

$$= \{2q - 29, 2q - 61 ... 3\}$$

Hence,
$$\{ | \phi(u) - \phi(v) | : u | v \in E(G) \} = \{ 1, 3, 5, ..., 2q - 1 \}.$$

So the graph (2, k) C_8 -snake is odd graceful.

Example 4

Figure 6: The odd graceful labeling of the graph (2, 3) C_8 -snake

Theorem 3: The graph (3, k) C_8 -snake is odd graceful.

Proof

Let $u_1u_2u_3...u_{k+1}$, w_i^j i = 1, 2, 3...k, $j = 1, 2, 3, v_i^j$ i = 1, 2, 3...k, $j = 1, 2, 3, w_{ij}^j$, i = 1, 2, 3...k, l = 1, 2, j = 1, 2, 3 are the vertices of (3, k) C_8 -snake, such that v_i^j & w_i^j are put between u_i and u_{i+1}, w_{ij}^j is put between w_p^j and u_i such that i = 1, 2, 3...k+1, p = 1,2,3...k, $l = 1, 2, j = 1, 2, 3, v_{ij}^j$ is put between v_p^j and u_i such that i = 1, 2, 3...k+1, p = 1,2,3...k, $l = 1, 2, j = 1, 2, 3, v_{ij}^j$ is beneath v_i^{j+1} , w_i^j is beneath w_i^{j+1} , where j = 1, 2, 3, the graph (3, k) C_8 -snake has number of edges "q" 24k, as shown in the next figure.

Figure 7: The graph (3, k) C_8 -snake

The number of edges" q''=24k

Define $\phi: V(G) \rightarrow \{0, 1, 2... 2q-1\}$ as following:

$$\phi(u_i) = 24(i-1) \qquad , i = 1, 2, 3 \dots k+1$$

$$\phi(w_i^j) = 24i + 4j - 14 \qquad , i = 1, 2, 3 \dots k \quad , j = 1, 2, 3$$

$$\phi(v_i^j) = 24i + 4k - 26 \qquad , i = 1, 2, 3 \dots k \quad , j = 1, 2, 3$$

$$\phi(w_{il}^j) = 2q - 24i - 12l + 2j + 29 \qquad , i = 1, 2, 3 \dots k, l = 1, 2, j = 1, 2, 3$$

$$\phi(v_{il}^j) = 2q - 24i - 12l + 2j + 23 \qquad , i = 1, 2, 3 \dots k, l = 1, 2, j = 1, 2, 3$$

From the definition of ϕ we find:

• $\forall v \in V(G) : V(G)$ is a set contains all the vertices of the graph G = (3, k) C_8 -snake

$$\max_{v \in V(G)} \phi(v) = \max_{1 \le i \le k+1} (24i - 24), \max_{\substack{1 \le i \le k, \\ j=1,2,3}} (24i + 4j - 14),$$

$$\max_{\substack{1 \le i \le k \\ l=1,2 \\ j=1,2,3}} (2q-24i-12l+2j+29), \max_{\substack{1 \le i \le k, \\ j=1,2,3}} (24i+4j-26), \\ \max_{\substack{1 \le i \le k \\ l=1,2, \\ j=1,2,3}} (2q-24i-12l+2j+23) \}$$

$$= \max\{\max\{0, \qquad 24, \qquad 48$$

$$\dots 24k\}, \max_{\substack{j=1,2,3 \\ j=1,2,3}} \{4j+10,4j+34\dots 4j+24k-14\},$$

$$\max_{\substack{l=1,2, \\ j=1,2,3 \\ j=1,2,3}} \{2q-12l+2j+5,2q-12l+2j-19\dots 2q-12l+2j-24k+29\}$$

$$, \max_{\substack{j=1,2,3 \\ j=1,2,3 \\ j=1,2,3 \\ j=1,2,3 \\ j=1,2,3 \\ 12l+2j-24k+23} \}$$

$$= 2q-1$$
we find that :-

Hence, we find that :- $\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$

- It's obvious that $\forall u, v \in V(G) \exists \phi(u) \neq \phi(v) \in \{0, 1, 2 \dots 2q-1\}$
- ... The function ϕ is one-to-one mapping from the vertex set of G "V(G)" to the set $\{0,1,2...2q-1\}$
- Now, we want to show that the labels of the edges of G belong to the set $\{1, 3, 5 \dots$

2q - 1 } and that's as following:

The range of $|\phi(w_{i1}^1) - \phi(u_i)| = \{2q - 48i + 43, i = 1, 2 ...k\}$

=
$$\{2q - 5, 2q - 53... 2q - 48k + 43\}$$
, $2q = 48k$
= $\{2q - 5, 2q - 53... 43\}$

The range of $|\phi(w_{i1}^1) - \phi(w_i^1)| = \{2q - 48i + 29, i = 1, 2 ...k\}$

$$= \{2q - 19, 2q - 67 \dots 2q - 48k + 29 \} \qquad , 2q = 48k$$

$$= \{2q - 19, 2q - 67 \dots 29 \}$$
The range of $|\phi(w_{i2}^{-1}) - \phi(w_{i}^{-1})| = \{2q - 48i + 17 \quad , i = 1, 2 \dots k \}$

$$= \{2q - 31, 2q - 79 \dots 2q - 48k + 17 \} \qquad , 2q = 48k$$

$$= \{2q - 31, 2q - 79 \dots 17 \}$$
The range of $|\phi(w_{i2}^{-1}) - \phi(u_{i+1})| = \{2q - 48i + 7 \quad , i = 1, 2 \dots k \}$

$$= \{2q - 41, 2q - 89 \dots 2q - 48k + 7 \} \qquad , 2q = 48k$$

$$= \{2q - 41, 2q - 89 \dots 7 \}$$
The range of $|\phi(w_{i1}^{-2}) - \phi(u_{i1})| = \{2q - 48i + 45 \quad , i = 1, 2 \dots k \}$

$$= \{2q - 3, 2q - 51 \dots 2q - 48k + 45 \} \qquad , 2q = 48k$$

$$= \{2q - 3, 2q - 51 \dots 45 \}$$
The range of $|\phi(w_{i1}^{-2}) - \phi(w_{i1}^{-2})| = \{2q - 48i + 27 \quad , i = 1, 2 \dots k \}$

$$= \{2q - 21, 2q - 69 \dots 2q - 48k + 27 \} \qquad , 2q = 48k$$

$$= \{2q - 21, 2q - 69 \dots 27 \}$$
The range of $|\phi(w_{i2}^{-2}) - \phi(w_{i2}^{-2})| = \{2q - 48i + 15 \quad , i = 1, 2 \dots k \}$

$$= \{2q - 33, 2q - 81 \dots 2q - 48k + 15 \} \qquad , 2q = 48k$$

$$= \{2q - 33, 2q - 81 \dots 2q - 48k + 15 \} \qquad , 2q = 48k$$

$$= \{2q - 33, 2q - 81 \dots 2q - 48k + 15 \} \qquad , 2q = 48k$$

$$= \{2q - 33, 2q - 81 \dots 2q - 48k + 15 \} \qquad , 2q = 48k$$

The range of
$$|\phi(w_{i2}^2) - \phi(u_{i+1})| = \{2q - 48i + 9, i = 1, 2 ...k\}$$

$$=\{2q-39,2q-87\dots 2q-48k+9\} \qquad ,2q=48k$$

$$=\{2q-39,2q-87\dots 9\}$$
 The range of $|\phi(w_{i1}^3)-\phi(u_i)|=\{2q-48i+47, i=1,2\dots k\}$
$$=\{2q-1,2q-49\dots 2q-48k+47\} \qquad ,2q=48k$$

$$=\{2q-1,2q-49\dots 47\}$$
 The range of $|\phi(w_{i1}^3)-\phi(w_i^3)|=\{2q-48i+25, i=1,2\dots k\}$
$$=\{2q-23,2q-71\dots 2q-48k+25\} \qquad ,2q=48k$$

$$=\{2q-23,2q-71\dots 25\}$$
 The range of $|\phi(w_{i2}^3)-\phi(w_i^3)|=\{2q-48i+13, i=1,2\dots k\}$
$$=\{2q-35,2q-83\dots 2q-48k+13\} \qquad ,2q=48k$$

$$=\{2q-35,2q-83\dots 13\}$$
 The range of $|\phi(w_{i2}^3)-\phi(u_{i1})|=\{2q-48i+11, i=1,2\dots k\}$
$$=\{2q-37,2q-85\dots 2q-48k+11\} \qquad ,2q=48k$$

$$=\{2q-37,2q-85\dots 11\}$$
 The range of $|\phi(w_{i1}^1)-\phi(u_i)|=\{2q-48i+37, i=1,2\dots k\}$
$$=\{2q-11,2q-59\dots 2q-48k+37\} \qquad ,2q=48k$$

$$=\{2q-11,2q-59\dots 2q-48k+35\} \qquad ,2q=48k$$
 The range of $|\phi(v_{i1}^1)-\phi(v_{i1}^1)|=\{2q-48i+35, i=1,2\dots k\}$
$$=\{2q-13,2q-61\dots 2q-48k+35\} \qquad ,2q=48k$$

$$=\{2q-13,2q-61\dots 2q-48k+35\} \qquad ,2q=48k$$

The range of $|\phi(v_{i2}^1) - \phi(v_i^1)| = \{2q - 48i + 23, i = 1, 2 ...k\}$

$$= \{2q - 25, 2q - 73 \dots 2q - 48k + 23 \} \qquad , 2q = 48k$$

$$= \{2q - 25, 2q - 73 \dots 23 \}$$
The range of $|\phi(v_{i2}^{-1}) - \phi(u_{i+1})| = \{2q - 48i + 1 \quad , i = 1, 2 \dots k \}$

$$= \{2q - 47, 2q - 95 \dots 2q - 48k + 1 \} \qquad , 2q = 48k$$

$$= \{2q - 47, 2q - 95 \dots 1 \}$$
The range of $|\phi(v_{i1}^{-2}) - \phi(u_i)| = \{2q - 48i + 39 \quad , i = 1, 2 \dots k \}$

$$= \{2q - 9, 2q - 57 \dots 2q - 48k + 39 \} \qquad , 2q = 48k$$

$$= \{2q - 9, 2q - 57 \dots 39 \}$$
The range of $|\phi(v_{i1}^{-2}) - \phi(v_{i}^{-2})| = \{2q - 48i + 33 \quad , i = 1, 2 \dots k \}$

$$= \{2q - 15, 2q - 63 \dots 2q - 48k + 33 \} \qquad , 2q = 48k$$

$$= \{2q - 15, 2q - 63 \dots 33 \}$$

The range of
$$|\phi(v_{i2}^2) - \phi(v_i^2)| = \{2q - 48i + 21, i = 1, 2 ...k\}$$

$$= \{2q - 27, 2q - 75, ..., 2q - 48k + 21\}, 2q = 48k$$

$$= \{2q - 27, 2q - 75 \dots 21\}$$

The range of
$$|\phi(v_{i2}^2) - \phi(u_{i+1})| = \{2q - 48i + 3, i = 1, 2 ...k\}$$

$$= \{2q - 45, 2q - 93 ... 2q - 48k + 3\} , 2q = 48k$$

$$= \{2q - 45, 2q - 93 ... 3\}$$

The range of
$$|\phi(v_{i1}^3) - \phi(u_i)| = \{2q - 48i + 41, i = 1, 2 ...k\}$$

$$= \{2q - 7, 2q - 55... 2q - 48k + 41\}, 2q = 48k$$

$$= \{2q - 7, 2q - 55... 41\}$$

The range of
$$|\phi(v_{i1}^{3}) - \phi(v_{i}^{3})| = \{2q - 48i + 31 , i = 1, 2 ...k \}$$

$$= \{2q - 17, 2q - 65 ... 2q - 48k + 31 \} , 2q = 48k$$

$$= \{2q - 17, 2q - 65 ... 31 \}$$
The range of $|\phi(v_{i2}^{3}) - \phi(v_{i}^{3})| = \{2q - 48i + 19 , i = 1, 2 ...k \}$

$$= \{2q - 29, 2q - 77 ... 2q - 48k + 19 \} , 2q = 48k$$

$$= \{2q - 29, 2q - 77 ... 19 \}$$
The range of $|\phi(v_{i2}^{3}) - \phi(u_{i+1})| = \{2q - 48i + 5 , i = 1, 2 ...k \}$

$$= \{2q - 43, 2q - 91 ... 2q - 48k + 5\} , 2q = 48k$$

 $= \{2q - 43, 2q - 91 \dots 5\}$

Hence,
$$\{ | \phi(u) - \phi(v) | : u | v \in E(G) \} = \{ 1, 3, 5, ..., 2q - 1 \}.$$

So the graph (3, k) C_8 -snake is odd graceful.

Example 5

Figure 8: The odd graceful labeling of the graph (3, 2) C_8 -snake

Theorem 4: The graph (m, k) C_8 -snake is odd graceful.

Proof

Let $u_1u_2u_3...u_{k+1}$, w_i^j i = 1, 2, 3...k, j = 1, 2, 3...m, v_i^j i = 1, 2, 3...k, j = 1, 2, 3...m, w_{ij}^l , i = 1, 2, 3...k, l = 1, 2, j = 1, 2, 3...m and v_{ij}^l , i = 1, 2, 3...k, l = 1, 2, j = 1, 2, 3...m are the vertices of (m, k) C_8 -snake, such that v_i^j & w_i^j are put between u_i and u_{i+1}, w_{ij}^j is put between w_p^j and u_i such that i = 1, 2, 3...k+1, p = 1,2,3...k, l = 1, 2, j = 1, 2, 3...m, v_{ij}^j is put between v_p^j and u_i such that i = 1, 2, 3...k+1, p = 1,2,3...k, l = 1, 2, j = 1, 2, 3...m, v_i^j is beneath v_i^{j+1} , w_i^j is beneath w_i^{j+1} , where j = 1, 2, 3...m, the graph (m, k) C_8 -snake has number of edges "q" 8m k, as shown in the next figure.

Figure 9: The graph (m, k) C_8 -snake

The number of edges" q''=8m k

Define $\phi: V(G) \rightarrow \{0, 1, 2... 2q-1\}$ as following:

$$\phi(u_i) = 8m (i - 1)$$
, $i = 1, 2, 3 ... k + 1$

$$\phi(w_i^j) = 8mi + 4j - 4m - 2$$
, $i = 1, 2, 3 ... k$, $j = 1, 2, 3 ... m$

$$\phi(v_i^j) = 8mi + 4j - 8m - 2$$
, $i = 1, 2, 3 ... k$, $j = 1, 2, 3 ... m$

$$\phi(w_{ii}^j) = 2q - 8mi - 4ml + 2j + 10m - 1$$
, $i = 1, 2, 3 ... k$, $l = 1, 2, j = 1, 2, 3 ... m$

$$\phi(v_{il}^{j}) = 2q - 8mi - 4ml + 2j + 8m - 1$$
 , $i = 1, 2, 3... k, l = 1, 2, j = 1, 2, 3...m$

From the definition of ϕ we find:

• $\forall v \in V(G) : V(G)$ is a set contains all the vertices of the graph $G = (m, k) C_8$ -snake

$$\max_{v \in V(G)} \phi(v) = \\ \max \left\{ \max_{1 \le i \le k+1} (8mi - 8m), \max_{1 \le i \le k, i \le j \le m} (8mi + 4j - 4m - 2), \\ \max_{1 \le i \le k} (2q - 8mi - 4ml + 2j + 10m - 1), \\ \max_{1 \le i \le k} (8mi + 4j - 8m - 2), \\ \lim_{1 \le i \le k} (8mi + 4j - 8m - 2), \\ \lim_{1 \le i \le k} (2q - 8mi - 4ml + 2j + 8m - 1) \right\}$$

$$= \max_{1 \le i \le k} (2q - 8mi - 4ml + 2j + 8m - 1)$$

$$= \max_{1 \le i \le k} (4j + 4m - 2, 4j + 12m - 2 \dots 4j + 8mk - 4m - 2), \\ \max_{1 \le j \le m} (2q - 4ml + 2j + 2m - 1, 2q - 4ml + 2j - 6m - 1)$$

$$= \max_{1 \le i \le m} (2q - 4ml + 2j - 8mk + 10m - 1)$$

$$= \max_{1 \le j \le m} (4j - 2, 4j + 8m - 2 \dots 4j + 8mk - 8m - 2), \\ \max_{1 \le j \le m} (2q - 4ml + 2j - 1, 2q - 4ml + 2j - 8m - 2), \\ \max_{1 \le j \le m} (2q - 4ml + 2j - 3mk + 8m - 1)$$

$$= 2q - 1$$

Hence, we find that $\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$

• It's obvious that $\forall u, v \in V(G) \exists \phi(u) \neq \phi(v) \in \{0, 1, 2 \dots 2q-1\}$

- ... The function ϕ is one-to-one mapping from the vertex set of G "V(G)" to the set $\{0,1,2...2q-1\}$
- Now, we want to show that the labels of the edges of G belong to the set $\{1, 3, 5 \dots 2q 1 \}$ and that's as following: The range of $|\phi(w_{i1}^j) \phi(u_i)| = \{2q 16mi + 2j + 14m 1 , i = 1, 2 \dots k, j = 1, 2 \dots m \}$

$$= \{2q + 2j - 2m - 1, 2q + 2j - 18m - 1 \dots 2q + 2j - 16mk + 14m - 1, j = 1, 2 \dots m\}, 2q = 16mk$$

The range of $|\phi(w_{i1}^{j}) - \phi(w_{i}^{j})| = \{2q - 16mi - 2j + 10m + 1, i = 1, 2 ...k, j = 1, 2 ...k, j = 1, 2 ...k \}$

$$= \{2q - 2j - 6m + 1, 2q - 2j - 22m + 1 \dots 2q - 2j - 16mk + 10m + 1, j = 1, 2 \dots m \} , 2q = 16mk$$

The range of $|\phi(w_{i2}^{j}) - \phi(w_{i}^{j})| = \{2q - 16mi - 2j + 6m + 1, i = 1, 2 ...k, j = 1, 2 ...k, j = 1, 2 ...k \}$

=
$$\{2q - 2j - 10m + 1, 2q - 2j - 26m + 1 \dots 2q - 2j - 16mk + 6m + 1, j = 1, 2 \dots m\}$$
, $2q = 16mk$

The range of $|\phi(w_{i2}^{j}) - \phi(u_{i+1})| = \{2q - 16mi + 2j + 10m - 1, i = 1, 2 ...k, j = 1, 2 ...k, j = 1, 2 ...k \}$

$$= \{2q + 2j - 6m - 1, 2q + 2j - 22m - 1 \dots 2q + 2j - 16mk + 10m - 1, j = 1, 2 \dots m \} , 2q = 16mk$$

The range of $|\phi(v_{i1}^{j}) - \phi(u_i)| = \{2q - 16mi + 2j + 12m - 1, i = 1, 2 ...k, j = 1, 2 ...k, j = 1, 2 ...k \}$

$$= \{2q + 2j - 4m - 1, 2q + 2j - 20m - 1 \dots 2q + 2j - 16mk + 12m - 1, j = 1, 2 \dots m \} , 2q = 16mk$$

The range of
$$|\phi(v_{i1}^{j}) - \phi(v_{i}^{j})| = \{2q - 16mi - 2j + 12m + 1, i = 1, 2 ...k, j = 1, 2 ...k, j = 1, 2 ...k \}$$

$$= \{2q - 2j - 4m + 1, 2q - 2j - 20m + 1 \dots 2q - 2j - 16mk + 12m + 1, j = 1, 2 \dots m \} , 2q = 16mk$$

The range of $|\phi(v_{i2}^{j}) - \phi(v_{i}^{j})| = \{2q - 16mi - 2j + 8m + 1, i = 1, 2 ...k, j = 1, 2 ...k, j = 1, 2 ...k \}$

$$= \{2q - 2j - 8m + 1, 2q - 2j - 24m + 1 \dots 2q - 2j - 16mk + 8m + 1, j = 1, 2 \dots m\}, 2q = 16mk$$

The range of $|\phi(v_{i2}^{j}) - \phi(u_{i+1})| = \{2q - 16mi + 2j + 8m - 1, i = 1, 2 ...k, j = 1, 2 ...k, j = 1, 2 ...k \}$

$$= \{2q + 2j - 8m - 1, 2q + 2j - 24m - 1 \dots 2q + 2j - 16mk + 8m - 1, j = 1, 2 \dots m \} , 2q = 16mk$$

Hence,
$$\{ | \phi(u) - \phi(v) | : u | v \in E(G) \} = \{ 1, 3, 5, ..., 2q - 1 \}.$$

So the graph (m, k) C_8 -snake is odd graceful.

Example 6

Figure 10: The odd graceful labeling of the graph (5, 1) C_8 -snake

Theorem 5: The graph kC_{12} -snake is odd graceful.

Proof

Let $u_1u_2u_3...u_{k+1}$, $w_1w_2w_3...w_k$, $v_1v_2v_3...v_k$, $a_1a_2a_3...a_k$, $x_1x_2x_3...x_k$, $b_1b_2b_3...b_k$, $h_1h_2h_3...h_k$, $c_1c_2c_3...c_k$, $z_1z_2z_3...z_k$, $d_1d_2d_3...d_k$ and $g_1g_2g_3...g_k$ are the vertices of kC_{12} -snake, such that v_i & w_i are put between u_i and u_{i+1} , a_i is put between w_i and u_i , x_i is put between a_i and a_i , a_i is put between a_i and a_i and

Figure 11: The graph kC_{12} -snake

The number of edges" q''=12k

Define $\phi: V(G) \rightarrow \{0, 1, 2... 2q-1\}$ as following:

$$\phi(u_i) = 6i - 6$$
 , $i = 1, 2, 3 \dots k+1$

$$\phi(x_i) = 2q - 6i + 5$$
 , $i = 1, 2, 3 \dots k$

$$\phi(h_i) = 2q - 6i + 1$$
 , $i = 1, 2, 3... k$

$$\phi(a_i) = 6i - 4$$
 , $i = 1, 2, 3 \dots k$
 $\phi(b_i) = 6i - 2$, $i = 1, 2, 3 \dots k$
 $\phi(w_i) = 2q - 6i + 3$, $i = 1, 2, 3 \dots k$
 $\phi(z_i) = q - 6i + 5$, $i = 1, 2, 3 \dots k$
 $\phi(g_i) = q - 6i + 1$, $i = 1, 2, 3 \dots k$
 $\phi(c_i) = 2q + 6i - 12k - 4$, $i = 1, 2, 3 \dots k$

 $\phi(d_i) = 2q + 6i - 12k - 2$

 $, i = 1, 2, 3 \dots k$

 $\phi(v_i) = q - 6i + 3$

 $, i = 1, 2, 3 \dots k$

From the definition of ϕ we find:

• $\forall v \in V(G) : V(G)$ is a set contains all the vertices of the graph $G = kC_{12}$ -snake

$$\max_{v \in V(G)} \phi(v) = \max_{1 \le i \le k+1} (6i-6), \max_{1 \le i \le k} (2q-6i+5), \max_{1 \le i \le k} (6i-4),$$

$$\max_{1 \le i \le k} (2q-6i+1),$$

$$\max_{1 \le i \le k} (6i-2), \max_{1 \le i \le k} (2q-6i+3), \max_{1 \le i \le k} (q-6i+5),$$

$$\max_{1 \le i \le k} (q-6i+1), \max_{1 \le i \le k} (2q+6i-12k-4),$$

$$\max_{1 \le i \le k} (2q+6i-12k-2), \max_{1 \le i \le k} (q-6i+3)$$

$$= \max\{\max\{0, 6, 12 \dots 6k\}, \max\{2q-1, 2q-7 \dots 2q-6k+5\},$$

 $= \max\{\max\{0, 6, 12 \dots 6k\}, \max\{2q - 1, 2q - 7 \dots 2q - 6k + 5\}, \max\{2, 8, 14 \dots 6k - 4\}, \max\{2q - 5, 2q - 11 \dots 2q - 6k + 1\}, \max\{4, 10 \dots 6k - 2\}, \max\{2q - 3, 2q - 9 \dots 2q - 6k + 3\}, \max\{q - 1, q - 7 \dots q - 6k + 5\}, \max\{q - 5, q - 11 \dots q - 6k + 1\}, \max\{2q - 12k + 2, 2q - 12k + 8 \dots 2q - 6k - 4\}, \max\{2q - 12k + 4, 2q - 12k + 10 \dots 2q - 6k - 4\}, \max\{q - 3, q - 9 \dots q - 6k + 3\}\}$

= 2q - 1

Hence, we find that :- $\phi(v) \in \{0, 1, 2 \dots 2q - 1\}$

- It's obvious that $\forall u, v \in V(G) \exists \phi(u) \neq \phi(v) \in \{0, 1, 2 \dots 2q 1\}$
- ... The function ϕ is one-to-one mapping from the vertex set of G "V(G)" to the set $\{0,1,2...2q-1\}$
- Now, we want to show that the labels of the edges of G belong to the set $\{1, 3, 5 \dots$

2q - 1 } and that's as following:

The range of $|\phi(x_i) - \phi(u_i)| = \{2q - 12i + 11, i = 1, 2...k\}$

=
$$\{2q - 1, 2q - 13 \dots 2q - 12k + 11\}$$
 , $2q = 24k$

$$= \{2q - 1, 2q - 13 \dots 11\}$$

The range of $|\phi(x_i) - \phi(a_i)| = \{2q - 12i + 9, i = 1, 2...k\}$

$$= \{2q - 3, 2q - 15 \dots 2q - 12k + 9 \}$$
 , $2q = 24k$

The range of $|\phi(w_i) - \phi(a_i)| = \{2q - 12i + 7, i = 1, 2 ...k\}$

=
$$\{2q - 5, 2q - 17 \dots 2q - 12k + 7\}$$
 , $2q = 24k$

The range of $|\phi(w_i) - \phi(b_i)| = \{2q - 12i + 5, i = 1, 2 ...k\}$

=
$$\{2q - 7, 2q - 19 \dots 2q - 12k + 5\}$$
 , $2q = 24k$

The range of $| \phi(h_i) - \phi(b_i) | = \{2q - 12i + 3, i = 1, 2 ...k \}$

=
$$\{2q - 9, 2q - 21 \dots 2q - 12k + 3\}$$
 , $2q = 24k$

The range of $| \phi(h_i) - \phi(u_{i+1}) | = \{2q - 12i + 1, i = 1, 2 ...k \}$

=
$$\{2q - 11, 2q - 23 \dots 2q - 12k + 1\}$$
 , $2q = 24k$

The range of $|\phi(z_i) - \phi(u_i)| = \{q - 12i + 11, i = 1, 2 ...k\}$

= {
$$q-1$$
, $q-13 \dots q-12k+11$ } , $q=12k$

$$= \{ q-1, q-13 ...11 \}$$

The range of
$$|\phi(c_i) - \phi(z_i)| = \{q + 12i - 12k - 9, i = 1, 2 ... k\}$$

$$= \{ q - 12k + 3, q - 12k + 15 \dots q - 9 \}$$
, $q = 12k$
$$= \{3, 15 \dots q - 9 \}$$

The range of
$$|\phi(c_i) - \phi(v_i)| = \{q + 12i - 12k - 7, i = 1, 2 ...k \}$$

$$= \{q - 12k + 5, q - 12k + 17 ... q - 7 \} , q = 12k$$

$$= \{5, 17 ... q - 7 \}$$

The range of
$$|\phi(d_i) - \phi(v_i)| = \{q + 12i - 12k - 5 , i = 1, 2 ...k \}$$

$$= \{q - 12k + 7, q - 12k + 19 ... q - 5 \} , q = 12k$$

$$= \{7, 19 ... q - 5 \}$$

The range of
$$|\phi(d_i) - \phi(g_i)| = \{q + 12i - 12k - 3 , i = 1, 2 ...k \}$$

$$= \{q - 12k + 9, q - 12k + 21 ... q - 3 \} , q = 12k$$

$$= \{9, 21 ... q - 3 \}$$

The range of
$$|\phi(g_i) - \phi(u_{i+1})| = \{q - 12i + 7, i = 1, 2 ...k \}$$

$$= \{q - 5, q - 17 ... q - 12k + 7 \}, q = 12k$$

$$= \{q - 5, q - 17 ... 7 \}$$

Hence,
$$\{ | \phi(u) - \phi(v) | : u \ v \in E(G) \} = \{ 1, 3, 5 \dots 2q - 1 \}.$$

So the graph kC_{12} -snake is odd graceful.

Example 7

Figure 12: The odd graceful labeling of the graph $2C_{12}$ -snake

Conclusion:

In this paper, we defined the graph (m, k) C_4 -snake and proved that the graphs kC_4 - snake is odd graceful, we proved the graph (2, k) C_4 -snake is odd graceful, we introduced the odd graceful labeling of the graph (3, k) C_4 -snake, we introduced the odd graceful labeling of the graph (m, k) C_4 -snake. We proved that the graphs kC_6 - snake is odd graceful, we proved the graph (2, k) C_6 -snake is odd graceful, we introduced the odd graceful labeling of the graph (3, k) C_6 -snake, we introduced the odd graceful labeling of the graph (m, k) C_6 -snake, we proved that the graph (3, k) C_8 -snake is odd graceful, we introduced the odd graceful labeling of the graph (3, k) C_8 -snake, we introduced the odd graceful labeling of the graph (m, k) C_8 -snake, and after that we proved that the graph kC_{12} -snake is odd graceful.

References:

- [1] R.B. Gnanajothi, Topics in graph theory, Ph.D. thesis, Madurai Kamaraj University, India, 1991.
- [2] A. Rosa, Cyclic Steiner Triple Systems and Labeling of Triangular Cacti, Scientia, 5 (1967) 87-95.

[3] E. M. Badr, M. I. Moussa and K. Kathiresan (2011): Crown graphs and subdivision of ladders are odd graceful, International Journal of Computer Mathematics, 88:17, 3570-3576.